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1. Introduction

E- and H-plane circular bends of the rectangular

waveguide, shown in Table 1(A), are very familiar

waveguide components. So far, many works [1-4] have

been done for the analysis of this structure, but their results

are practically limited for the gradual bend case only.

Therefore, wide-band frequency characteristics with wide

range of bend parameters (=bend angle and curvature*)

including sh~ bend are still not clear, but are needed for

the future microwave integrated circuit design. This paper

solves these problems by the following procedure.

1. Derivation of terminal mode impedance which leads to

the equivalent network representation, based on the

planar circuit theory and norrnat mode analysis.

2. Calculation of the equivalent network parameters.

Especially, calculation of radial mode function is the

key stew non-uniform transmission line analogy and

numerical analysis is utilized in our case.

3. Wide-band frequency characteristics (V.S.W.R) of E-

and H-plane right angle circular bend are calculated for

wide range of bend curvature by our method.

Through these analysis, E-and H-plane circular bend can

be treated in the same way because they are ruled by the

same planar circuit equations.

(*bend curvature parameter: C=b/a OCC<l)

2. Derivation of equivalent network representation

- multi-transmission lines circuit -

E- or H-plane curved rectangular waveguide shown in

Table l(A) can be considered to be a E- or H-plane planar

circuit as a whole. Therefore, as demons~ated by (B)-(E)

in Table 1, the 3-D field distribution in these stiucture

including inpudoutput waveguide can be fully described by

the following planar circuit equations.

{

gradV = –jXJ

divJ = –jBV
(1)

.
where series reactance X and shunt susceptance B with

the boundary condition are given by (G), (F) in Table 1 for

E- and H-plane planar circuit, respectively.

In order to solve these planar circuit equations

systematically under the given boundary conditions, the

curved waveguide is divided into the straight and circular

bend section, where x-y coordinate system is replaced by 1-

s rectangular or r-0 cylindrical coordinate system,

respectively. Then, as explained in Table 2 and 3, the

equivalent multi-transmission lines circuit in each section

is derived based on the separation of variables technique

and modal analysis.

Table 1 Eplane and H-plane planardrcuit quations

and boundaryconditionfor E. and H-planecircularbend.
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(a) E-Plane&Bend
! .,

J-D Field E =(E,,O) , H=(H,,HZ)

Planar
[

gradVN= -jXKJH
Circuit divJH = -jB%H
Equations

with B. C. ~=0 (OrJK. n=O)
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(b)H-Planea”Bend

E=(E,,EZ) . H=(H,,O)

H,(x,y,z) = H,(x.Y)

E,(x,y,z) = EZ(X,Y)

EJx,Y,z) = O

Ve = -EZ(X,Y)d (V)

.fe = H,(x.y)x k (A/m)

(

smdVe = -jXeJE

divJe = -jB%6
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Mode characteristic impedance, mode propagation

constant and mode function in each section are given or

defined in table 2,3 and 4(A).

Here, the whole equivalent network is shown in Fig. 1,

where the coupling between propagation modes in the

straight and circular bend section at the junction is

represented by ideal transformer, whose transformer ratio

between n-th mode in the circular bend and p-th mode in

the i-th input/output waveguide is given by eq.(2).

(2)

In Fig. 1, ZC, and ZC,, v. and ~~ are characteristic

impedance and propagation constant at circular and

straight section given by (C) in Table 2 and Table 3,

respectively. Then terminal mode impedance between i-th

port p-th mode (i,p) and j-th port q-th mode (j,q) are given

by the following equation.

[)Zpq= ~ ‘: n:,●
n np

(

–jZcn cot vn~

)[ )

–jZcn cscvnct n:~ O

–jZcn cscvncx –jZcn cot vncx () n~~ ‘3)

:--................... .
6=0 ecu -

Fig.1 Coordinate system and equivalent
multi-transmission lines circuit.

Table 2 Equivalent tmmmuss“ ion tine mndel of straight waveguide saction,

Epbure H-plane

Cnmdinate system (1s) Coordinate syatam (k)

Separating of variable with pth mode width function f.(s)

V)(f,s) = V#(t)f#(s) V:(l,s)=V:(e)f;(s)
J~,(t.s) = [I$(t)/d]f; (s) J?p(l ) - ~,s - [Iqt)/ W]f:(s)

1 v“(t)f)’ (s)J~(Ls)=jp ~ 1 Vlof;” (s)J:(l.s) =j= ~

f“(s)=~cos(pmdd)
P fE(s)=WSin(pndw)

P

p=o,L2,-. p=l,z,...

Transmissionlineequationsalong1forp-thwidthmade

I:(t)

o 0

0 t v; (1)
o

t
v:(e)

*! we
H ~H

% . .jx~$ , x: . ~
~E

~. -jx~l~ , x; .7

de
@

,_~d
E

~= -jB~V~, Bp - x“
E E .dE=~w~=-jBPVP , ~ x

~H .$
q Ppd

ZE .+
T ppw

1$=~ B; =J~

Table 3 Equivalent transmission tins model for circular bend section.

Z-plane (r,O) H-plane (r,@

I

(a) E-plane circular bend I (b)H-plane circular bend
1

Separation of variable for voltage arrdcurrent with radial function R.(r)

V)(r,9) = V;(e). R:(r) V~(r.e) = V~(@ .R~(r)

J&(r,@= I~(e). R~(r)/r J:, (r,e) = I@). R~(r)/ r

1 V“(9). R~ (r)Jfl(r.e) = j~ , 1 VE(8). R~(r)/rJ%(r,8)=j~ ,

R!(r) :see table4 (n= 0.1.2,...)

I

R:(r) :see table 4 (n = 0,1,2,...)

Tramrdaafon line equations along (3for n.tfr radial mode

v: :circularpmpagakxl constant vf :circulaspropagationconstant

z; .$ z:=;
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3. Calculation of radial mode function with the

help of non-uniform transmission line analogy

As explained by (A) in Table 4, radial mode function

R.(r) and circular propagation constant V. are the

solution of the following eigenvalue equation, whose

boundary condition(B .C.) is given in Table 4.

L&!&j+ [,,.xj).lln=o ,4,

When & = O, analytical solution is obtained and given

by (B) in Table 4 for E and H-plane circular bend,

respectively. However analytical solution is impossible

for ~t#O. Therefore, how to solve the eigenvalue

equation (4) for flt # O is the key process in our analysis.

As shown by (C) in Table 4, replacing R(r) by v(r) and

defining i(r) as jr dR/dr, second order differential equation

(4) can be transformed to a pair of fiit order differential

euuations.
dv di
— = –jx(r)i , ~ = –jb(r)v
dr

(5)

where x(r) = 1/r , b(r) = ~~r–vz /r
These equations can be understood as a voltage-current

relation along the non-uniform transmission line as shown

in Fig.2.

In order to fmd R, and v, numerically for a given ~t,

this non-uniform transmission line between b and a is

equally divided into N small sections, so as to make each

Fig.2 Non-uniform transmission line model
and its step-like approxhnation.

section be approximated by uniform transmission line.

Then, assuming v, total F-matrix between b and a can be

calculated numerically by F-matrix product of N sections,

resulting eq.(6)

(6)

Numerical search of Vn, which makes Ct = O, gives v:

and then R:(r). Also Et = O gives v: and R:(r). Thus

calculated example of E-plane circular bend are shown in

Fig.3 (d/W= O.5); V: as a function of normalized

frequency F for C=O.01 and corresponding normal mode

function R:(r) at F=l.O and F=l.5 up to 5-th mode.

When ~t = O(F=l .0), R,(r) and Vnare analytically

obtained by (B) in Table 4. No difference between the

numerical results (F=l.0) and analytical results(F=l .0) in

Fig.3 proves the validity of the above numerical

computation. In our calculation N is taken as 200, which is

enough for sufficient calculation accuracy.

4. Frequency characteristics of V. S.W.R of right

angle circular bend

Based on equivalent network shown in Fig. 1, V.S .W.R

of E-and H-plane right angle circular bend with wide range

Table4 Radial normal mnde fimction in cimriar bend.

E@rre H-plane

R.: n-tb radial nrwnralmcde Vm: n-tb drcrkr pfOII~tiOll C022Stf212t

~4r!4$+[(~32 -~]R$ =0 ~~(r~)+I(p!)2 -~lR: =0
r dr dr

(~~)z =k; -(K/W~ (~~)z =k;
A

B.C. $=i)(r=~b) B.C. R~=O(r=a,b)

RH(r)RH(r) =6
rmrm”~

~R~(r)R~(r)+=6m
r

Arraticalsolution for @O

‘~(’)=%’”{%”:l “(’)=%+=1 n

“J% (n=0,1,2,-)
‘~‘-’lnc

-“L (n =1,2,-)
‘~= JInc

C=wa C=wa

Numerical solution for &#O by non-uniform transmission line

H dRE

v(r) = R:(r) , i(r)= jr. % v(r) = R:(r), M = jr-+

[

~ = -j~(r)i(r)

I

~= -jx(r)i(r)
c

~=-jb(r)v(r) ~= -jb(r)v(r)

x=l/r, b=(~~)2r-vz/r x=l/r, b=(~~)zr-vl/r

B.C. i(r)= O (r= a,b) B.C. v(r)= O (r= &b)
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of bend curvature is calculated for the frequency band where only dominant

mode propagates. Hence, the higher modes in the inputfoutput waveguide

are terminated by the corresponding reactive mode impedance. The results

are shown in Fig.4. In these analysis, enough number of higher modes

(evanescent modes) in each region are taken into consideration for

example, 14 evanescent modes for C=O.01 case).

5. Conclusion

Systematic analysis method to calculate the frequency characteristics of

E- and H-plane circular bend of any bend angle and curvature for the

rectangular waveguide is proposed and wide band frequency characteristics 1.0 1.5 2.0 2.5 3.0

of 90°bend angle are calculated for wide range of bend curvature including
Normalized Frequency

shaq) bend by this method. 15

B

F=lS

Literature 1.0
Il=o

1.S.O.Rice,“Refl@ion thm circularbends in rec $: - - >-=,” --
angularwaveguides-matrixtlmry,”, Betl Syst. , .
Tech. J.., VO1.27 .0.5

2. J.A. Cochmnand RG. P- “Mode
C=o.ol

.1.0

propagationin continuouslycurvedwaveguides,”, 0.0 0.2 0.4 OJ 0.s 1.0

Radio Science,vol.1,no.6
-rld -

3.L. Lew@ “Theotyof Waveguides,”,New York 1.s
Wiley, 1975

B

~~ C=o.ol
4. V.K.Tripath~etc,“Arigorousand effkient “ F=l

\. -
method of moments solutionfor curved

‘ 05
g /

/

waveguidebends,”,IEEE MIT VO1.40,no.12, f 0.0 II-3
/

Dec. 1992. .05 / F=l..5

-1.0
0.0 02 0.:of 0.8 1.0

15

1.0

‘ 0s

~

‘=:\ -----
~/-

:0.0
=1

I
-05 =1s

C=o.ol
-1,0

0.0 0.2 0.:& 0.s 1.0

1s

1.0

IEiz3

C=o.ol 11=4

‘ 0.5 F=l
@ \ /

~ 0.0
/

.0.s /
/ .15

-1.0
0.0 0.2 0.4 0.6 OS 1.0

-rld -

~os* I!iz55F~> ”---
~ 0.0 Ild

/ .15
-05 Z

-1.0
C=o.ol

0.0 0.2 Od 0.6 0.S 1.0
-r/d-

1S

1.0

G

C=o.ol

F=l
“ 05
g \

~ 0.0
.=s

.0s F=lS

1.6

1..5

1.4

1.3

1.2

1.1

1.0
1,0 1.2 1.4 1.6 1.8 2.0

Normalized frequency F. ZWIL

Fig.3 Chcufar propagation constant vand radiaf normal mode tlmction
(F=l.O and F=l.S) for E-plaae circufar bend(d=W/2).
Broken fine also includes analytical reardts of Table 4(B).
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Fig.4 Frequency characteristics(V.S.W.R) of E- and H-plane right angle circular bend.
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