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1. Introduction

E- and H-plane circular bends of the rectangular
waveguide, shown in Table 1(A), are very familiar
waveguide components. So far, many works [1-4] have
been done for the analysis of this structure, but their results
are practically limited for the gradual bend case only.

Therefore, wide-band frequency characteristics with wide

range of bend parameters (=bend angle and curvature*)

including sharp bend are still not clear, but are needed for
the future microwave integrated circuit design. This paper
solves these problems by the following procedure.

1. Derivation of terminal mode impedance which leads to
the equivalent network representation, based on the
planar circuit theory and normal mode analysis.

2. Calculation of the equivalent network parameters.
Especially, calculation of radial mode function is the
key step; non-uniform transmission line analogy and
numerical analysis is utilized in our case.

3. Wide-band frequency characteristics (V.S.W.R) of E-
and H-plane right angle circular bend are calculated for
wide range of bend curvature by our method.

Through these analysis, E- and H-plane circular bend can
be treated in the same way because they are ruled by the
same planar circuit equations.

(*bend curvature parameter : C=b/a, 0<C<1)

2. Derivation of equivalent network representation
— multi-transmission lines circuit —

E- or H-plane curved rectangular waveguide shown in
Table 1(A) can be considered to be a E- or H-plane planar
circuit as a whole. Therefore, as demonstrated by (B)-(E)
in Table 1, the 3-D field distribution in these structure
including input/output waveguide can be fully described by
the following planar circuit equations.
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gradV =—jX]J (1)
div] =-jBV

where series reactance X and shunt susceptance B with
the boundary condition are given by (G), (F) in Table 1 for
E- and H-plane planar circuit, respectively.

In order to solve these planar circuit equations
systematically under the given boundary conditions, the
curved waveguide is divided into the straight and circular
bend section, where x-& coordinate system is replaced by 1-
s rectangular or r-8 cylindrical coordinate system,
respectively. Then, as explained in Table 2 and 3, the
equivalent multi-transmission lines circuit in each section
is derived based on the separation of variables technique
and modal analysis.

Table 1 E-plane and H-plane planar circuit equations
and boundary condition for E. and H-plane circular bend.
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Mode characteristic impedance, mode propagation
constant and mode function in each section are given or
defined in table 2, 3 and 4(A).

Here, the whole equivalent network is shown in Fig. 1,
where the coupling between propagation modes in the
straight and circular bend section at the junction is
represented by ideal transformer, whose transformer ratio
between n-th mode in the circular bend and p-th mode in
the i-th input/output waveguide is given by eq.(2).

n® =(a—15—) j:R,,(r)fp sP)dr )

'

InFig. 1, Z_ and Z_, v, and B, are Characteristic

cn?
impedance and propagation constant at circular and
straight section given by (C) in Table 2 and Table 3,

respectively. Then terminal mode impedance between i-th
port p-th mode (i,p) and j-th port g-th mode (j,q) are given

by the following equation.
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Fig.1 Coordinate system and equivalent
multi-transmission lines circuit.

Table 2 Equivalent transmission line model of straight waveguide section.

E-plane He-plane
Coordinate system (1,s) Coordinate system (1s)
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Table 3 Equivalent transmission line model for circular bend section.
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H-plane (r,0)
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3. Calculation of radial mode function with the
help of non-uniform transmission line analogy
As explained by (A) in Table 4, radial mode function

R, (r) and circular propagation constant v, are the

solution of the following eigenvalue equation, whose

boundary condition(B.C.) is given in Table 4.

1d( dr V2
O e

When B, = 0, analytical solution is obtained and given
by (B) in Table 4 for E and H-plane circular bend,
respectively. However analytical solution is impossible
for B, #0. Therefore, how to solve the eigenvalue
equation (4) for B, # O is the key process in our analysis.
As shown by (C) in Table 4, replacing R(r) by v(r) and
defining i(r) as jr dR/dr, second order differential equation
(4) can be transformed to a pair of first order differential
equations.

% =—jx(0i , % =~jb(r)v (5

where x(r)=1/t , b(r)=Br-v*/r

These equations can be understood as a voltage-current
relation along the non-uniform transmission line as shown
in Fig.2.

In order to find R and v, numerically for a given B,,
this non-uniform transmission line between b and a is
equally divided into N small sections, so as to make each

Fig.2 Non-uniform transmission line model
and its step-like approximation.

section be approximated by uniform transmission line.
Then, assuming v, total F-matrix between b and a can be
calculated numerically by F-matrix product of N sections,
resulting eq.(6)

Vb At Bl Va (6)
i, ) \C, D,\i,

Numerical search of v, which makes C, = 0, gives vf
and then Rf(r). Also B, = 0 gives vf and Rf (r). Thus
calculated example of E-plane circular bend are shown in
Fig.3 (d/W=0.5); VI

frequency F for C=0.01 and corresponding normal mode

as a function of normalized

- function Rf(r) at F=1.0 and F=1.5 up to 5-th mode.

When B, = 0(F=1.0), R (r) and v, are analytically
obtained by (B) in Table 4 . No difference between the
numerical results (F=1.0) and analytical results(F=1.0) in
Fig.3 proves the validity of the above numerical
computation. In our calculation N is taken as 200, which is

enough for sufficient calculation accuracy.

4, Frequency characteristics of V.S.W.R of right
angle circular bend
Based on equivalent network shown in Fig. 1, V.S.W.R
of E-and H-plane right angle circular bend with wide range

Table 4 Radial normal mode functien in circular bend.

E-plane [ H-plane

R, : n-th radial normal mode v, : n-th circular propagation constant
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Numerical solution for $t+0 by non-uniform transmission line

H E

v =RE@) , i) = jr-Ra- v =RED) , i) = jr- 22
dr dr

& @it
e
4
= jb(r)v(r)
x=1/r, b=Bf)Yr=v/c

v _

-d?- Jx(Oi(r)
-:-:=-jb(r)V(r)
x=1/t, b=BEYr—v¥/c

B.C. i(r)=0 (r=a,b) B.C. v(=0 (r=a,b)
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of bend curvature is calculated for the frequency band where only dominant
mode propagates. Hence, the higher modes in the input/output waveguide
are terminated by the corresponding reactive mode impedance. The results
are shown in Fig.4. In these analysis, enough number of higher modes
(evanescent modes) in each region are taken into consideration( for

example, 14 evanescent modes for C=0.01 case).

5. Conclusion

Systematic analysis method to calculate the frequency characteristics of
E- and H-plane circular bend of any bend angle and curvature for the
rectangular waveguide is proposed and wide band frequency characteristics
of 90" bend angle are calculated for wide range of bend curvature including

sharp bend by this method. 15
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Fig3 Circular propagation constant vand radial normal mode function R(r)

(F=1.0 and F=1.5) for E-plane circular bend(d=W/2).
Broken line also includes analytical results of Table 4(B).
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Fig.4 Frequency characteristics(V.S.W.R) of E- and H-plane right angle circular bend.



